
VOLUME 2 ISSUE 3 «1.50 NOVeriBEh lVd5

UPER
ONTHLY

f^ORTH 1 Kracker '""^ have been reported to be
ASSEMBLY 5 dif-ficult to -find in some regions, MG
99 POTPOURRI 11 now of-fers the chips at *4.50 each,

with C.O.D. (91.90) being available
for U.S. customers < other countr i es

,

prepaid) . Installation is provided
Millers Graphics has announced only for orders initiated with the

the upcoming release o-f a new so-ftware optional chips specified (total price
package, DisKassembler""', Written by »1S4.95 plus shipping and handling).
Tom Freeman, DisKassembler ' ""' cr
directly assemblable source files from
99/4A Assembly Language object code
that is in either Display Fixed 80 or
memory image format (such as game
files) . In addition, it will
disassemble console memory and all
valid DSR's. Program output is to
disk or any printer. Object files may
be from floppy disk, hard disk or RAM
disk in CorComp, MYARC or TI disk
control ler formats. The program is
for anyone interested in how programs
were constructed and in learning new
programming techniques. Carrying a
suggested price of «19.95 (plus
shipping and handling), the package
wi 1 1 include complete and useful
documentation (the hallmark of all MG
products)

.

The f i rst sh i pments of GRAM
Kracker"", Millers Graphics'
incredible new hardware device, will
be released on December 16 and 17.
Due to quality control procedures that
ensure that all customers will receive
the product without jumper
modifications, the shipment dates Are
behind original projections, which has
prompted Millers Graphics to provide
UPS Blue Label shipping at no extra
charge to ensure arrival by Christmas.
As the 3 optional RAM chips for GRAM

- NOVEMBER
SUPER 99

Ol^tTIH

Strings. Part 1

by Warren Agee

STANDARD! lA 2EA 4B 5A 6B 7B 9B

PREFACE:

With this tutorial (and more to
come !) , I humbl y submi t what I have
learned by programming in the FORTH
language. One reason I decided to put
down into words the knowledge I have
acquired is to share my experiences,
frustrations and triumphs while
hacking away with FORTH. But, on a
more personal level, I give these
tutorials to the TI world as a token
of apprec i at i on for everythi ng I have
gained from knowing such people as
Ronald Albright, Barry Traver, and
Howie Rosenberg, just to name a few,
as well as the whole gang on the TI
FORUM. These and many others have
given unselfishly to both me and the
TI community as a whole, and I am
proud to be part of a community that
refuses to die. Now, on with the
programming, FORTHwithI <ugh!> — >
1985 1 -
i^OHTHLV

STRINGING ALONG IN FORTH

Q+ all the peculiarities the beginner con-fronts in FORTH, string handling
IS a major obstacle. Nothing is more -frustrating than to ait down and have no
idea how to write something like A»=" 1234" :

:

A=VAC<A») . No advanced
string-handling routines come with the TI FORTH systems disk. So, it is up to
the programmer to invent his own. Hopefully, this article will make it much
easier to write a FORTH program that involves any string mainpulation at all.

THE BASICS

Be-fore jumping into the new string words, let's -first take a look at how a
string sits in memory. This knowledge is imperative in order to -fully exploit
the power o-f FORTH. Think o-f a string as a numeric array; each character in
the string represents a number, or byte. The string HOME COMPUTER would look
like this:

IHiOiMIEI !C!0!M!P!U!T1E!RI

The -first "box" represents the address in memory where this string
Determining the location o-f this address is what we will discuss next.

starts.

There are many ways to store strings: we could save them in VDP RAM, or in
the disk buf-fers. In this article, we will investigate storing strings directly
in the dictionary. A string variable is no more than a numeric variable
stretched out. In +act, unlike BASIC, there is only one type o-f variable in
FORTH, The only thing that di-f-fers is the size. First use the word VARIABLE to
create a variable. But when you create it, let's say O VARIABLE TEST, only two
bytes are alloted -for storage. This is -fine -for single numbers; but -for
strings, we can use ALLOT to speci-fy the length o-f the variable. For instance,
O VARIABLE TEST 8 ALLOT will create a variable with a length o+ ten bytes. This
gives us room -for a string with a maximum length o-f 10 characters. I-f the above
IS exectuted, the variable will look like this in memory:

1 t 1 I I I I t I

I t • i I I I I I

addr of TEST

Once the string is created in the dictionary, there may be garbage in the
variable. Here we can use BLANKS to clean it out: TEST 10 BLANKS. This will
fill ten bytes of memory, starting at TEST, with blanks (ASCII 32).

Now that space has been reserved for the string, there are basically two
ways to store the string. If the contents of the variable is not going to
change, then the word !" can be used. All this word requires is an address on
the stack. So, to store STRINGS in the variable TEST defined above, the
sequence TEXT !" STRINGS" will do the trick. If you wish the user to input the
string, the word EXPECT is available, which is similar to BASIC'S INPUT
statement; it awaits an entry from the keyboard. EXPECT requires both an
address and the maximum length of the string on the stack. Using TEST 7 EXPECT
will achieve the same results as TEST !" STRINGS" . The variable will now look
like this:

{S!T!R!

I

iNIGiS! I i

This presents our first problem. Since the contents of TEST is not
expected to change, the length of the string can be assumed to always be 7.
However, if the length will vary, we must keep track of it. EXPECT does not do
this for us. Sure, it requires a length on the stack, but it does not
incorporate this value into the string. Not to worry. This brings us to our
first new word, ACCEPT, which replaces EXPECT. The only difference is that
ACCEPT stores the actual length of the string entered into the byte preceding
the string. This is often called the count byte. If we use ACCEPT in the
example above, our string would now look like thisi

i7!S!TiR! I !N!GIS! { !

addr of TEST

- NOVEMBER 1985 2
SUPER 99 hOHTHLV

— >

$^ V°" <=3" s^®» ^^^ first letter of the string, the "S", no longer sits at
TtST; the whole string has moved over one byte to oiake room -for the cour*- Now,to print this string is a trivial matter o-f using TEST COUNT iYPE. TEST
supplies the adrir o+ the complete string. COUNT takes that address- calculates
the address o-f the actual string CTEST+1), and -finally supplies the length o-fthe string. Everything is ready -for TYPE. To summarize what we have done so
far, consider the -following examples

O VARIABLE COOKIE
COOKIE 20 BLANKS
COOKIE 20 ACCEPT
COOKIE COUNT TYPE

18 ALLOT (reserves 20 bytes)

CHOCOLATE CHIP

Note: any word
in as a respon

MOVING AROUND

that appear between underscore characters <) are to be typed
to the ACCEPT word-

~

Up till now, I have discussed performing basic -functions on strings which
in the dictionary. This is not always the ideal situatioi
^ J_ _A- It Jk *

reside directly
much better way is
done, then move it
Typing in PAD just
Typ i cal 1 y , i nstead

on, A
to store the string in a temporary spot, do what needs to be
back into the dictionary. This temporary spot is called PAD-
leaves an address on the stack, just as TEST does.

_,, ,, of typing in TEST 10 ACCEPT, you would type PAD 10 ACCEPT.Once any processing is done, the word CMOVE can move the bugger back to where
It belongs. Here arises our second problem. CMOVE moves a specified quantity ofbytes from low memory to high memory. But what if you want to go the other wayaround? Well, define a new word, of course! The new word will be <CMOVE, whichIS included in some versions of FORTH. But wait—isn't it rather a hasslehaving to remember which word to use? Of course it is! Remember, FORTH isextensible, and we can make it as user-friendly as we like! The next new v..,rdwill be CMOVE*, which decides which way the string is moving, and does themoving for you.

Here is an example of using CMOVE* and PADi

VARIABLE DRESSER 8 ALLOT
DRESSER 10 BLANKS
PAD 10 ACCEPT _SOCKS_

. (string processing done here)

(get addr and length)
(PAD-1 CNT+1)
(PAD-1 DRESSER CNT+1)

PAD COUNT
1+ SWAP 1- SWAP
DRESSER SWAP
CMOVE*
DRESSER COUNT TYPE

Everything should make sense until you get to the 1-*- SWAP 1- SWAP, The
!^f?cc2i"^

is * little hard to grasp at first: we want to move SOCKS from PAD toDRESSER. We also want to maintain that ever-important count byte. But when weuse PAD COUNT, we only have the addr and length of the string itself, notincluding the count. So we compensate. Add 1 to the count (because we want to
?JSM^-r^^?_.^°V"J ^yJ^ along with the string), then subtract one from the address.COUNT adds 1 to the address, so we have to correct this to catch the count.Once these two numbers have been corrected to catch the count byte, shiftthings around to get everything ready for CMOVE*. To better illustrate this.here is a diagram of PAD: '

i5!SI0iCIK!SI I
I

I I
I t (Contents of PAD)

I PAD+1 (This is where you are using PAD COUNT)
I

PAD (This is where you are using PAD COUNT 1+ SWAP 1- SWAP)

If you
count byte
in FORTH h
experiment,

can understand the principl
tacked on to the string when

been removed. Next time- I
and Keep On FORTHin'

!

of the count byte,
moved, then a major
will discuss string

NOVEMBER 1985 3 -
SUPER 99 MONTHLY

and how
obstacli
arrays.

to keep the
! in writing
Until then,

—

>

SUMMARY OF RESIDENT WORDS -

VARIABLE (n— > Create a variable.
ALLOT (n-.—) Reserves n bytes in the dictionary.
BLANKS (addr n—) Fills n bytes with blanks.
EXPECT (addr n—) Waits -for inputj stores string at addr.
COUNT (addr) Returns addr and count o-f a string.
CMOVE (adrl adr2 n) Moves n bytes from adrl to adr2y trom low to

high memory.
PAD (—adr> Temporary storage place for strings.

NEW WORDS

: PICK (nl — n2>

2 « SP@ -t- a ;

(Copies nlth number to top of stack)

I LEN (addr — n>

255 O (string max«2S5 characters)
DO

Dup I + ce
0» IF (looks for null)

I LEAVE < I=length of string)
END IF

LOOP
SWAP DROP ;

< Returns the length of a string at addr.)

; ACCEPT (addr n —)

OVER 1+ DUP ROT (adr+1)

EXPECT
LEN (length of string)
SWAP C ! I (store count byte at addr)

(Waits for inputs stores count at addr and string
starting)

(at adr-fl.)

E < CMOVE (adrl adr2 n)

DUP ROT -I- SWAP ROT
1-DUP ROT -I-

DO
1- I ca OVER C! -1

+LOOP
DROP ;

(Moves n bytes from adrl to adr2v from high to low memory.)

I CMOVE* (adrl adr2 n)

OVER 4 PICK >
IF < CMOVE
ELSE CMOVE
ENDIF ;

(Moves n bytes from adrl to adr2$ automatically decides on)
(direction.

)

— >
- NOVEMBER 1985 4 -

SUPER 99 MONTHLY

STANDARD: lA 2XB EA TW 3B 4B 5A 6B 7B 9B lOB

TI-WRITER SCREEN DUMP inspired by May, 1985 Super 99 Monthly «

The -Following Source code, when assembled and combined with the XB *
calling routine and Subprogram will create a DISPLAY/VARIABLE 80 -file »
that will print a screen image -from the TI-WRITER FORMATTER, *

The program will work with any EPSON compatible printer. i^

Insert the -following line in your XB program where you want the dump to *
occurs *

CALL TIW DUMP<DE,F»,BL,EL,T): I STOP *
»

Where DE= Density (I or 2) «
\r%~ Filename that you want the dump stored under t

For example: DSKl. PICTURE *
BL- Beginning line o-f the screen that you want saved *
EL= Ending line o-f the screen that you want saved *
T = Tab value Note: Tab o-f 20 centers picture t

*
Type in and save the +ollowing sub program in merged -format- Merge it *
into the program that contains the graphics that you want dumped. t

25000 SUB TIW DUMP (DE, F», BL, EL- T) «
25010 ON ERROR 25080 «
25020 IF <T<0)+<T>40)+(BL>EL)+(BL<1)+(BL>24)+(EL<1)+(EL>24) «
THEN GOSUB 25080 «
25030 IF DE02 THEN DE»="DE1" ELSE DE«="DE2" *
25040 CALL INIT a: CALL LOAD < "DSKl . TIWDUMP-0" >: b CALL LINK(DE*, »
F*-BL,EL-T) «
25045 ! LINES 25050 to 25070 MAY BE DELETED IF DESIRED »
25050 OPEN #1:F«, DISPLAY- VARIABLE 80- APPEND »
25060 PRINT #1 : CHR* (27) &CHR* (64) :

" . PL 1"
! 27-64 RESETS PRINTER, »

-PL 1 WILL STOP UNWANTED FORM FEED S
25070 CLOSE #1 «
25075 SUBEXIT «
25080 PRINT "BAD PARAMETER" :: STOP :; RETURN »
25090 SUBEND «

«
tf$*t*tt*tttt*tt*ttMtttttt**tttttt*ttttt*tttttttttttttttttttttttt*tttt*tttt*tt*

by Joseph H- Spiegel *
SOURCE ID: TI6240 COMPUSERVE ID 72426,3432 «

DEF DE1,DE2
VSBW EQU >2020
VMBW EQU >2024
VSBR EQU >2028
VMBR EQU >202C
STRREF EQU >2014
NUMREF EQU >200C
FAC EQU >834A

AORG >2700
DEI MOV R11-@SAVE SAVE RETURN ADDRESS

LWPI MYREGS
CLR R14 RESET FLAG -> SINGLE DENSITY
JMP MAIN

DE2 MOV R11,@SAVE SAVE RETURN ADDRESS
LWPI MYREGS
SETO R14 SET FLAG -> DOUBLE DENSITY

* GET START AND END LINES AND TAB INFO «
t**ttt***ttttt*tt*ttt*ttt%*ttttttt*t***ttttttt*ttttt*tttttttt*t*
MAIN LI R4,STARTL POINT TO LOCATION TO HOLD START ADDRESS

LI Rl,2 START LINE IS SECOND VALUE FROM XB
GLINE CLR RO

BLWP ©NUMREF GET VALUE PASSED FROM XB
MOV @FAC,R5 MOVE VALUE FROM FAC TO R5
ANDI R5,>00FF VALUE IS IN LOWER BYTE
DEC R5 LINE 1 STARTS AT >0000V
SLA R5,5 X32 BYTES PER LINE

- NOVEMBER 1985 5 -
SUP£fi 99 MONTHLY

L0DP3

SD

t

MOV
INCT
INC
CI
JLT
CLR
BLWP
CLR
MOV
AND I

INC
AI
JLT
JMP
DEC
AI
SWPB
MOVE
AI
MOV

CLR
LI
LI
BLWP
LI
LI
LI
BLWP
LI
MOV
BLWP
DATA
LI
LI
BLWP

MOV
JEQ
INC
INC
LI
LI
BLWP

,«R4
R4
Rl
R1!l4
GLINE
RO
QNUMREF
R5
eFAC,R4
R4,>00FF
R5
R4,-10

SAVE VALUE FOR LATER
END LINE STORED AFTER START LINE
6ET READY TO GET NEXT VALUE FROM
BOTH START AND END LINE STORED?
NO, GET END LINE

YES, GET TAB VALUE

MOVE VALUE FROM FAC TO R4
VALUE IS IN LOWER BYTE
START BINARY TO BCD CONVERSION

R5 COUNTS "TENS"
R4 COUNTS "ONES"

XB

L00P3
R5
R4,10
R5
R5,R4
R4' >3030
R4,eTAB

RO
Rl,l
R2,FILE
eSTRREF
R0,>1E00
R1,PAB
R2, >0028
SVMBW
R6, >1E09
R6,e>B356
SDSRLNK
8
RO,>1EOO
Rl, >0300
eVSBW

R14,R14
SD
@DEN5
@LEN

STORE "TENS" AS HIGH BYTE OF "ONES"
CONVERT TO ASCII
STORE IN TAB PORTION OF FIRST TL.

I

J

NOW WE WANT THE FIRST VALUE
STORE IT AS PART OF THE PAB
GET THE STRING NOW
VDP BUFFER FOR PAB

MOVE IT TO VDP FROM CPU

NOW OPEN THE DISK FILE

FROM XB

MOVE WRITE BYTE TO PAB

SINGLE DENSITY DUMP?
YES, DON'T CHANGE ANYTHING
NO, CHANGE DENSITY AND

PRINT LINE LENGTH IN FIRST TL_
R0,>1E05
R1,>2B00 LENGTH OF FIRST TL
eVSBW MOVE IT TO PAB ^ ^^^^*

FIRST TL CONTAINS CODES TO INITIALIZE GRAPHICS *

t

LO

LI
LI
LI
BLWP
MOV
BLWP
DATA

RO, >1F00
R1,TL1
R2, >2B
@VMBW
R6,@>8356
SDSRLNK
8

DATA BUFFER IN VDP

MOVE FIRST TL TO VDP

SEND IT TO THE PRINTER

EACH REDEFINABLE XB CHARACTERS PATTERN WILL BE #
STORED AS A TRANSLITERATE *

)

L3

L2

«

LI
MOV
LI
LI
BLWP
LI
CLR
LI
CLR
CLR
CLR

RIO, 1024
RIO.RO
Rl, IN
R2,8
eVMBR
R5,128

POINT TO START OF IMAGE TABLE

WE'LL STORE THE PATTERN HERE

R8
R9,128
R3
R4
R7

A PATTERN
R5 POINTS TO BIT BEING CONVERTED
RS POINTS TO BYTE IN CONVERTED PATTERN
R9 POINTS TO BYTE NUMBER
R3 POINTS TO BYTE BEING CONVERTED
R4 HOLDS CONVERTED BYTE
R7 HOLDS BYTE BEING CONVERTED

CONVERT PATTERN *

MOVB eiN(3) ,R7
R7
R7,R5
LI
R9,R4

- NOVEMBER 1985 6 -
SUPEfi 99 MONTHLY

SWPB
C
JLT
A — >

LI

S
SWPB
MQVB
INC
SRA
JGT
SWPB
MOVE
INC
SRA
CI
JLT

RS,R7
R7
R7,@IN(3>
HZ
R9,l
L2
R4
R4,@D0(8)
R8
R5,i

«
LDTL

R8,S
L3

CHANGE TO ASCII VALUES AND STORE IN OUTPUT BUFFER *

CLR R9
CLR RB
ANOTHER

LOOP

CI

L00P2

»
noo

ZERO!

ZER02

ZER03

ZER04

SD6

CLR
CLR
CLR
MOVB
SWPB
INC
AI
JLT
JMP
DEC
AI
CI
JLT
INC
AI
JLT
JMP
DEC
AI
DON'T
MOV
JEQ
MOVE
INC
MOV
JEQ
MOVE
INC
MOVE
INC
MOVE
INC
MOV
JEQ
MOV
JEQ
MOVE
INC
MOV
JEQ
MOVE
INC
MOVE
INC
MOVE
INC
INC
CI
JLT

R4
R5
R7

POINTS TO BYTE IN CONVERTED PATTERN
OFFSET FOR OUTPUT BUFFER

BINARY TO BCD CONVERSION «
R4 COUNTS "ONES"
R5 COUNTS "TENS"
R7 COUNTS "HUNDREDS"

@D0(9),R4
R4
R5
R4,-10
CI
LOOP
R5
R4,10
R5, 10
LlOO
R7
R5,-10
C2
L00P2
R7
R5,10
PRINT ANY LEADING ZEROS HERE «

R7,R7
ZEROl
eASCI I<7) , ISTLDATA <8)
RB
R5,R5
ZER02
eASC I I(5) , STLDATA (a

>

RB
eASC I I(4) , QTLDATA <8

)

R8
aC0MMA,eTLDATA<8)
R8
R14,R14 SINGLE DENSITY?
SD6
R7,R7 IF NOT, REPEAT LAST CHARACTER IN BUFFER

SASCII (7) ,iaTLDATA<8)
R8
R5,R5
ZER04
SASCI I (5) , STLDATA (8)
R8
@ASC I I(4 > , STLDATA (8

)

R8
eC0MMA,@TLDATA<8>
R8
R9
R9,8 LAST BYTE?

^u., LDTL IF NOT, GET NEXT

OUTPUT TRANSLITERATE «
»«»««««««««««]|c««««y««««««««»«««»««««««]|c]K«]|[i|c««««]K«»»y«:f:yic«
AI R8,7 COMPUTE TOTAL LINE LENGTH
BL SNXT GET NEXT ASCII TRANSLITERATE VALUE
LI R0,>1E05
MOV RBjRl
SWPB R

1

eVSEW WRITE LINE LENGTH TO PAB
RO, >IF00

- NOVEMBER 1985 7 -
SUPER 99 MONTHLY

BLWP
LI — >

SD4

LI R1,TLBUF
MOV R8,R2
BLMP @VMBW
MOV R6,@>a356
BLWP SDSRLNK
DATA 8
AI RIO,

8

CI RIO, 1903
JGT SCDMP
B dLO

PUT LINE IN VDP

NOW OUTPUT IT TO DISK

POINT TO NEXT IMAGE
LAST ONE?

IF NOT, DO NEXT ONE

* DUMP IMAGE TO DISK FILE *

SCDMP

LOOPS
LOOPC

LI R0,>1E05
LI Rl,>2100
BLWP @VSBW
MOV eSTARTL.RS
MOV I1ENDL,R7
INC R7
CLR R4
MOV R5,R0
BLWP QVSBR
SRL Rl,8

PUT LENGTH OF IMAGE LINE IN PAB
GET STARTING LOCATION AND
ENDING LOCATION

CONTl

C0NT2

Rip -96
Rl!32
CONTl
Rl,32
Rl,143
C0NT2
Rl, 143
Rl.-—

AI
CI
JGT
LI
CI
JLT
LI

MOVE @sfcREEN<l),eBUFDTA<4')
INC R4
INC R5
CI R4,32
JLT LOOPC
LI R0,>1F00
LI Rl, BUFFER
INC R4
MOV R4,R2

READ CHARACTER FROM IMAGE TABLE
MOVE TO LOWER ORDER BYTE
ADJUST FOR BASIC
LESS THAN LEGAL GRAPHIC CHAR?

IF SO, DEFAULT TO CHR*<32)
GREATER THAN LEGAL?

IF SO, DEFAULT TO CHR»(143>
ADJUST Rl TO BECOME OFFSET FOR "SCREEN- DATA

END OF LINE?
IF NOT, GET NEXT IMAGE

BLWP @VMBW
MOV R6,e>e356
BLWP SDSRLNK
DATA 8

R5,R7
LOOPB

IF SO, MOVE LINE TO VDP

THEN OUTPUT TO DISK

C
JLT

LAST LI
IF NOT, DO NEXT

« RESET TRANSLITERATE CODES «
tt****t******tt*tt*tt**t****t***ttttttt*ttttttttttttt*ttt*ttttt

LI R0,>1E05
LI R1,>0B00

CHANGE LINE LENGTH IN PAB

RST

BLWP @V^BW
LI R4,>3030 \
MOV R4,@DEC3 \
AI R4,>0100 /
MOVE R4,@DEC1 /
MOVE @DEC3,eTLDATA
MOVE iaDEC2,eTLDATA-i-l
MOVE eDECl,@TLDATA+2
LI R0,>1F00
LI R1,TLBUF
LI R2. >000B

RESET TRANSLITERATE BUFFER
TO ,TL 001

TRANSLITERATE THE
VALUE

TO ITSELF

L12

ELWP av^EW
MOV R6,e>8356
ELWP SDSRLNK
DATA 8
MOV eDEC3,R5
CI R5,>3132
JLT L12
MOVE aDECl,R5
SRL R5,8
CI R5,>32
JEQ EXIT
BL @NXT
JMP RST

PUT IT IN VDP

OUTPUT IT TO THE DISK

HAV ALL VALUES
tcEN RESET?

\
\
\
/

/
/
IF YES, GET READY TO RETURN
IF NOT, CALC'^i_ATE NEXT TL VALUE

« CLOSE DISK FILE AND RETURN TO XE «

- NOVEMBER 1985 8 -
SUPER 99 MONTHLY

— >

EXIT LI R0,>31E00
LI R1.>0100
BLWP aVSBW PUT CLOSE BYTE IN PAB
MOV R6,QI>8356
BLWP eDSRLNK CLOSE FILE
DATA 8
LWPI >83E0 RESET WS POINTER
MOV @SAVE,R11 GET RETURN VALUE
B «R11 RETURN TO XB

« ROUTINE TO INCREMENT ASCII TL VALUE »

NXT CLR R4
MOVB aDECl-R4 MOVE "ONES" BYTE TO R4
AI R4,>0i00 INCREMENT IT AND MOVE
MOVB R4,aDECl IT BACK
CI R4,>3A00 IS IT GREATER THAN ASCII 9 <CHR«<57>)?
JLT LIO
LI R4 , >3000
MOVB R4j,QDECl IF SO. REPLACE THE VALUE WITH ASCII
MOVB eDEC2,R4 AND INCREMENT
A I R4 , >0 i00 THE "TENS

"

MOVB R4,QDEC2 VALUE
CI R4,>3A00 IS THE "TENS" VALUE GREATER THAN ASCII 9?
JLT LIO
LI R4 , >3000
MOVB R4,aDEC2 IF SO, REPLACE THE VALUE WITH ASCII O
MOVB eDEC3,R4 AND INCREMENT THE
AI R4,>0100 "HUNDREDS"
MOVB R4,aDEC3 VALUE

CHECK IF THE VALUE IS ONE THAT WE DON'T
WANT TO TRANSLITERATE

> MOVB eDECl,R9
SWPB R9
MOVB eDEC2,R9
CI R9->3130
JEQ NXT
CI R9_>3133
JEQ NXT
C

I

R9 , >3237
JEQ NXT
CI R9->3332
JEQ NXT
CI R9->3338
JEQ NXT
CI R9->3432
JEQ NXT
C

I

R9 - >343A
JEQ NXT
CI R9.>3634
JEQ NXT
CI R9.>3934
JEQ NXT
RT RETURN WHEN OK

» NDTEi SINCE THE EXTENDED BASIC LOADER DOES NOT RECOGNIZE THE DSRLNK
« UTILITY, IT WAS NECESSARY TO INCLUDE IT.
*

* BEGINNING OF DSRLNK ROUTINE
«
DSRLNK DATA DSRREG.DSRO
DSRO MOV »14+,5

SZCB aDATA2,15
MOV e>8356,0
MOV Op 9
A I 9- >FFFa
BLWP eVSBR
MOVB 1,3
SRL 3,8
SETO 4
LI 2, NAME

D8R2 INC O
INC 4

- NOVEMBER 1985 9 - ^

SUPER 99 MONTHLY

C
JEQ D^Rl
BLMP' SVSER
MOVE1 1,«2+
CB 1,SDATA3

DSR2JNE
DSRl MOV 4,4

JEQ DSR3
CI
J5T D^R3
CLR @>83D0
MOV 4,e>8354
MOV 4 , @BUFF3
INC 4
A 4.@>8356

@>8356,@BUFF4MOV
LWPI >B3E0
CLR 1

LI 12,>0F00
DSR6 MOV 12' 12

JEQ DSR4
S6Z

DSR4 AI 12, >0100
e>83D0CLR

CI 1 2 , >2000
DSR5JEQ

MOV 12 , @>R3D0
SBO
LI 2 , >4000

«R2,eDATAl
DSRIi

CB
JNE
A eDSRREG+10,2
JMP DSR7

DSR9 MOV @>83D2,2
SBO

DSR7 MOV «2,2
JEQ DSR6
MOV 2,ta>83D2
I NOT 2
MOV *2+,9
MOVE e>835S,5
JEQ DSRS
CB
JNE

5,«2+
DSR9

SRL 5,8
LI 6, NAME

«6+,«2+DSRIO CB
JNE DSR9
DEC S
JNE DSRIO

DSR8 INC 1
MOV 1 , eBUFKS
MOV 9,eBUFF2

12,eBUFFlMOV
EL «9
JMP DSR9
SBZ
LWPI DSRRE6
MOV
BLWP eC'SBR
SRL 1,13

DSRllJNE
RTWP

DSR5 LWPI DSRREG
DSR3 CLR 1
DSRll SWPB 1

- MOVE
SOCB

1,«13
eDATA2, 15

NAME

RTWP
r

BSS 14 NAME BUFFER
DSRREG ESS 32 WORKSPACE FOR
DATAl DATA >AAOO
DATA2 DATA >2000
DATA3 DATA >2E00
BUFFO BSS 2
BUFFI BSS 2
BUFF2 ESS 2

DSRLNK

- NOVEMBER 1985 10
SUPER 99 MONTHLY

— >

BUFK4
BUFF5

BSS
BBS 2

« END OF DSRLNK ROUTINE

MYREGS BSS 32
»
MYREGS
SAVE
ASCII
COMMA
PAB

FILE

TLl
TAB

DENS

LEN
CR

DATA
DATA
DATA
DATA
BYTE
BYTE

9 '—"w*^ !i

>5000,>0000

EVEN
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
BYTE
EVEN

>0000
>3031 , /'o^onj,
>2C00
>0012,>1F00,
>00
>1F
>1F

-TL 1:27,65,8,10,13,27,68,'

>0D

DECl
BYTE

TLDATA BSS
EVEN

BUFFER BYTE

8
8

TEXT '_TL
BYTE >30
BYTE >30
BYTE >31
BYTE >3A

>01
BUFDTA BSS 32

STARTL
ENDL
SCREEN

>0000
>0300

EVEN
DATA
DATA
DATA
DATA w,,^^^, ,
DATA >1617,>1819,
DATA >2223, >2425,
DATA >2F30,>3132,
DATA >393A, >3B3C,
DATA >4445,>4647,
DATA >4E4F,>5051,
DATA >5859,>5A5B,
DATA >6364,>6566,

>0607,
>1011,
>1A1C,

>oao9
>1213,>1415
>1D1E,>1F21

>3D3E,
>4849,

>3F41, >4243
>4A4B,>4C4D

DATA >5859,>5A5B
DATA >6364,>6566
DATA >6D6E,>6F70
DATA >7778, >797A
END

>676e,
>7172,

>5F60,>6162
>696A, >6B6C
>7374, >7576

THIS IS A TABLE OF

ALL THE CHARACTERS

<IN HEX) THAT WE WILL

TRANSLITERATE

- - F=-OLJRR:I
News, Corrections, Updates, Editorials, Kudos and Come-what-may

Hicksvill NY.

The
formed h
Contact
Court

,

former man
own di

Renee'
Jose, CA

o-f

ount
eii n,
95126

NCC has now
disk -firm-
87 Rhoades
today

!

I WISH I HADs

Ful-f illments:
F2! For John Singleton, Westlake, LA,
MENGEN, available on the TI FORUM on
CIS, converts an Extended BASIC screen
to Assembly object code -for linking to
your proaram- Graphics are supported,
except character 130, A -few screens
can be loaded at once and using CALL
INIT will allow loading another set o-f
screens (your RAM Disk will help!>-

Wishesi
W3i A program to dump graphics and
^f!i*^,t^° ""y Pro-Writer #8510 printer,
I'd like to press a <CTRL> or <FCTN>
key for the dump, F.J. Bubenik, Jr.,

NEXT MONTH: Warren Agee's second FORTH tutorial
wwww»wft»

Navarone DBM tips tL

5 TI-Artist II tutorial Z
ff Extended BASIC tips And Much Mar-e ik

################################S###############tt##it4f4j#SSS#5^§S#S°;^gi^#########

- NOVEMBER 1985 11 - ^

SUPEfi 99 MONTHLy

COMING SOON:

Surpr i ses ! New products
Bytemaster and more new sta-ff
for Super 99 Monthly'.

from
members

/ \

SUBSCRIPTIONS (PER YEAR)
U.S. AND POSSESSIONS

FIRST CLASS
THIRD CLASS

OTHER COUNTRIES
AIR MAIL
SURFACE MAIL

INDIVIDUAL COPIES:
U.S. SUBSCRIBERS

FIRST CLASS
THIRD CLASS

CANADA SUBSCRIBERS
OTHER

Check or Money Order
coded -for processing

*16.00
12.00

.50
$16.00

1

1

1

1

00

50
in U.S. -funds,
through the
Bank System.U.S. Federal Reserve

No billings or credit sales,
(all issues available at press time)

\
/ \
SUPER 99 MONTHLY is published monthly
by Bytemaster Computer Services, 171
Mustang Street, Sulphur, LA 70663.
All correspondence received will be
considered unconditionally assigned
for publication and copyright and
subject to editing and comments by
the editors o-f SUPER 99 MONTHLY.
Each contribution to this issue and
the issue as a whole Copyright 1985
by Bytemaster Computer Services. All
rights reserved. Copying done -for
other than personal archival or
internal re-ference use without the
permission o-f Bytemaster Computer
Services is prohibited. Bytemaster
Computer Services assumes no
liability -for errors in articles.

\
/
EDITOR

Richard M. Mitchell (CIS 70337,1011)

SUPER 99 MONTHLY ORDER FORM

NAME

ADDRESS

CITY STATE

ZIP COUNTRY

For back issues, specify which:

READER FEEDBACK: (Attach comments)

/

/ \

/
\

STANDARD KEY

1 Computer A TI-99/4A
2 Module XB Extended BASIC

TW Tl-Writer
EA Ed i tor /Assemb 1 er

3 RS-232 B TI
4 Disk Drive B TEAC 55B
5 Expansion Box A TI
6 Disk B CorComp

Control ler
7 Memory Card B MYARC MEXP-1

(12BK)
9 Monitor or TV B TI Color Monitor
10 Printer B Gemini 15-X

GRAM Kracker and Di!sKassemb 1 er are
registered trademarks o-f Millers
Graphics.

/

CORRESPONDING STAFF WRITERS

Ch
ry A. Traver
les M. Robertson

ven J. Szymkiewicz, MD

Bytemaster Computer
171 Mustang Street
Sulphur, LA 70663

vices
Bulk Rate
U.S. Postage

PAID
Sul phur , LA 70663
Permit No. 141

POSTMASTER:

\

ADDRESS CORRECTION REQUESTED
RUSH — TIME DATED MATERIAL.

/

NOVEMBER 1985
SUPER 99 MONTHLY

